

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	partpy 1.2.4 documentation

Welcome to partpy’s documentation!

Parser Tools in Python (partpy, pronounced Par-Tee-Pie), a
collection of tools for hand writing lexers and parsers in python.

There are many parser generators but there isn’t much help for those
who wish to roll their own parser/lexer as counter-intuitive as that
may sound. partpy provides a solid base for hand written parsers
and lexers through a library of common tools.

By using partpy as the base for your own parser or lexer the hope
is to provide you with an environment where you can dive straight into
the language design, recognition and whatever else you need to do
without having to figure out how string matching should be done or
most of the error handling process.

Contents:

	Tutorial
	Movement

	Simple String Matching

	Pattern String Matching

	Your Implementation

	Exceptions

	Performance

	Changelog

	partpy Package
	sourcestring Module

	partpyerror Module

	spattern Module

	fpattern Module

	examples Package
	contacts Module

Feedback

If you have any suggestions or questions about partpy feel free to email me
at nekroze@eturnilnetwork.com.

You can check out more of what I am doing at http://nekroze.eturnilnetwork.com
my blog.

If you encounter any errors or problems with partpy, please let me know!
Open an Issue at the GitHub http://github.com/Nekroze/partpy main repository.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	partpy 1.2.4 documentation

Tutorial

The main thing that you will use when working with partpy is the
partpy.sourcestring.SourceString object. While this object can be
instantiated alone it is recommended to use it as a base class to inherit your
own lexer/parser from.

The SourceString can take a file or a string and will store it internally
along with; its length, the current index of the string, the current line and
column position and if the end of the string has been reached yet.

SourceString Also has a variety of methods used for things such as;
moving the current position, matching strings or string/function patterns,
counting indentations and a few other useful things.

Movement

When using a SourceString it can automattically keep track of which column
and line you are on in the text file as well as which index in the string it is
currently operating on.

The most simple way to check a character and move around a SourceString
derived object is with SourceString.get_char() and SourceString.eat_length(),
respectively. .get_char() will simply return the character at the current
position of the SourceString and .eat_length() will move over it to the
next character.

We can use SourceString.has_space(), or to avoid function call overhead,
SourceString.eos to start a loop that can keep going until broken or the
entirety of the SourceString stored string has been passed.
.. testcode:

from partpy import SourceString

class Number(SourceString):
 digits = '0123456789'
 def spew_everything():
 while not self.eos:
 char = self.get_char()
 if char in self.digits:
 yield char
 self.eat_length()

parser = Number("123abc456")
print(str(parser.spew_everything()) == '123456')

This class, when given a string to work with or a file, will go over every
character and yield only the numbers in it. While this example is trivial
and rather useless on its own it does teach us some handy things for later.

By using the self.eat_length() method, inherited from SourceString,
it will automatically move the current position forward by the integer value
given to self.eat_length() which is by default 1. This will handle newline
characters and as such eating a length of 1 will move the SourceString
position forwards by one along with the current column. However if the current
character is a newline then the column is set to 0 and the current line is
incremented by one.

It will always be import to eat the length of your match once you want to move
past it because all SourceString matching and retrieving methods use the
internally tracked positions.

Simple String Matching

There are several ways to match strings, The most explicit way is to specifically
define each posible string to match.

SourceString.match_string will attempt to match a single string at the current
position. SourceString.match_any_string does much the same thing but takes
a list of strings and will return the string that it matches and an empty string
if there is no match. There are the accompanying method;
SourceString.match_any_char are much the same as the string version but takes
a string of one or more characters to match against rather then a list.
.. testcode:

from partpy import SourceString

class Parser(SourceString):
 def match():
 match = self.match_any_string(['def', 'class'])
 self.eat_length(match)

 if not match:
 return match
 elif match == 'class':
 return 'TOKEN_CLASS'
 elif match == 'def':
 return 'TOKEN_DEF'

parser = Parser('class')
print(parser.match() == 'TOKEN_CLASS')

In an easy and fast way we can match any specific string or character however
we wish.

Pattern String Matching

SourceString also has mutltiple methods to help with string and pattern
matching. For example you can match a single string or a pattern using the
following. Just to simplify the example code SourceString will directly
instanced.
.. testcode:

from partpy import SourceString

myMatcher = SourceString()
myMatcher.set_string('partpy is cool')
match = myMatcher.match_string('cool')
if not match:
 match = myMatcher.match_function(str.isalpha)
print(match == 'partpy')

SourceString can match text in a few ways out of the box.
SourceString.match_string will attempt to match from the current position
(the very start at the moment because we haven’t eaten anything yet) to the
length of the given string and will return an empty string if nothing was found.
As it will be here.

Because nothing was matched we couldn’t match ‘cool’ at the current position we
will use SourceString.match_function instead. This method can take a function
that expects a single string or character argument and returns anything that can
be evaluated as a boolean. We will use the builtin str.isalpha method that will
return True for any alphabetical character or string.

SourceString.match_function will go from the current position forwards through
the SourceString until its function does not match anymore and return the results.

There is another method, SourceString.match_pattern, which works exactly the
same as SourceString.match_function but takes strings rather then functions,
this means that you can re-write the previous example as.
.. testcode:

from partpy import SourceString

myMatcher = SourceString()
myMatcher.set_string('partpy is cool')
match = myMatcher.match_string('cool')
if not match:
 match = myMatcher.match_pattern('abcdefghijklmnopqrstuvwxyz')
print(match == 'partpy')

This will work exactly the same and may even be faster as you can avoid function
overhead when using your own functions for SourceString.match_function however
there are many builtin str methods that are very useful and are much faster then
your own python interpreted functions.

Both SourceString.match_function and SourceString.match_pattern can actually
take two arguments. If a second argument given then the first argument is used
only to match the first character and all following characters are matched
using the second. This is useful for detecting ‘Title’ cased words for example.
.. testcode:

from partpy import SourceString

myMatcher = SourceString()
myMatcher.set_string('Partpy is cool')
match = myMatcher.match_function(str.isupper, str.islower)
print(match == 'Partpy')

The two arguments may also be given as a tuple or list to the first argument
only and will be unpacked into the first and second arguments automatically.

Your Implementation

As previously stated partpy was designed to be subclassed and used in your own
implementations of hand written parsers and lexical analyzers.
.. testcode:

from partpy import SourceString

class WordCollector(SourceString):
 def words(self):
 while not self.eos:
 while self.get_char().isspace():
 self.eat_string(self.get_char())
 word = self.get_string()
 self.eat_string(word)
 yield word

myCollector = WordCollector()
myCollector.set_string('these are all words')
words = [word for word in myCollector.words()]
print(words == ['these', 'are', 'all', 'words'])

This may be a pointless example in terms of its actual usefulness but ignore
that and just see how the SourceString is used rather then what this whole thing
does. One can see how they can make a simple OOP class that can parse or provide
lexical analyses using partpy in a very simple way.

Exceptions

Another useful thing that one should consider using is the handy PartpyError
which is an exception that can be raised with a custom message and a SourceString
derived object. Using this info when the exception is raised will, by default,
add to the end of a python stacktrace a numbered list of the current line (and
the previous one if available), aswell as a carrot underneath the current character,
based on the SourceString current position. Finally it will output the custom
message if defined.

>>>from partpy import SourceString, PartpyError
>>>source = SourceString('Let's use partpy')
>>>source.eat_length(6)
>>>raise PartpyError(source, 'you broke it!')
Traceback (most recent call last):
partpy.partpyerror.PartpyError:
1 |Let's use partpy
 ^
you broke it!

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	partpy 1.2.4 documentation

Performance

partpy is written with Cython support through .pxd files and can be
compiled for extra speed. If you do not want to use Cython simply install
it from the source with Cython uninstalled.

If however you use pip or easy_install or something similar Cython
is marked a dependency and must be installed.

partpy is tested without compilation on python{2.6, 2.7, 3.2} and the latest
pypy stable release. All these platforms are also tested with cython compilation
except for python{2.6}. As an additional bonus partpy is also tested for
rpython translation. This means that the pypy rpython translation toolchain
can compile partpy making it useable in very fast interpreters/VM’s using
pypy toolchain that can also provide a JIT compiler for free.

All of the compilation and usage options are designed to allow for maximum
flexability while also allowing maximum performance and usage.

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	partpy 1.2.4 documentation

Changelog

	V1.2.3

	
	Fix for new no space guards on patern matching not passing offsets

	V1.2.2

	
	Added Impyccable to test suite for better pattern testing

	Added no space guards to pattern matching and indenter

	V1.2.1

	
	Fixed .pxd files not being included in source distribution

	V1.2.0

	
	Added Offset arguments to most SourceString methods that should support it.

	Adde ‘_’ to qualified identifiers

	v1.1.0

	
	Added SourceString.eol_distance_next

	Added SourceString.eol_distance_last

	Added SourceString.spew_length a reverse of eat_length

	Minor failsafes

	v1.0.0

	
	Added RPython compatability.

	Removed some dynamic features

	Removed SourceString.generator

	SourceString.match_pattern renamed to match_string_pattern

	SourceString.match_function renamed to match_function_pattern

	Pattern matching methods only take their respective types, no more lists.

	v0.3.0

	
	
	Added SourceString methods:

	
	eat_line

	count_indents_last_line

	count_indents_length_last_line

	skip_whitespace

	get_all_lines

	retrieve_tokens

	Added least argument to SourceString.match_(pattern/function) for minimum length of match

	SourceString.eat_length now handles newlines automatically

	Some source code cleanups and cython fixes/optimizations

	All SourceString.eat_* methods nolonger function when SourceString.eos = 1

	Added sphinx based documentation system and http://partpy.readthedocs.org

	Line numebers start at line 1

	v0.2.1 - February 14th 2013

	
	Added examples directory to sdist

	v0.2.0 - February 14th 2013

	
	Matcher merged into SourceString

	new class SourceLine returned when dealing with specific SourceString lines

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	partpy 1.2.4 documentation

partpy Package

sourcestring Module

SourceString stores the entire string to be parsed in memory and provides
some simple methods for retrieving and moving current position aswell as
methods for matching strings and patterns.

	
class partpy.sourcestring.SourceLine(string, lineno)[source]

	Bases: partpy.sourcestring.SourceString

Contains an entire line of a source with handy line specific methods.

	
get_first_char()[source]

	Return the first non-whitespace character of the line.

	
get_last_char()[source]

	Return the last non-whitespace character of the line.

	
pretty_print(carrot=False)

	Return a string of this line including linenumber.
If carrot is True then a line is added under the string with a carrot
under the current character position.

	
strip_trailing_ws()[source]

	Remove trailing whitespace from internal string.

	
class partpy.sourcestring.SourceString(string=None)[source]

	Bases: object

Stores the parse string and its length followed by current position
in the string and if the end of the string has been reached.

It also stores the current row and column position as manually counted.

Provides multiple methods for matching strings and patterns and working
with the source string.

	
__contains__(string)[source]

	Returns a boolean if the given string is within the base string.
Called by ‘word’ in SourceString.

	
__getitem__(index)[source]

	Returns the character at the given index.
Called by SourceString[index] where index is an integer.

	
__init__(string=None)[source]

	Accepts a string or None by default. If a string is given then
self.set_string(string) is run automatically. If you wish to load a
file then create a SourceString object with no arguments and then use
load_file or overload this function when inheriting from SourceString.

	
__iter__()[source]

	Yields the current char and moves the position onwards until eos.

	
__len__()[source]

	Returns the length of base string. Called by len(SourceString).

	
__repr__()[source]

	Returns the entire base string. Called from the repr() builtin.

	
__weakref__

	list of weak references to the object (if defined)

	
add_string(string)[source]

	Add to the working string and its length and reset eos.

	
count_indents(spacecount, tabs=0, offset=0)[source]

	Counts the number of indents that can be tabs or spacecount
number of spaces in a row from the current line.

	
count_indents_last_line(spacecount, tabs=0, back=5)[source]

	Finds the last meaningful line and returns its indent level.
Back specifies the amount of lines to look back for a none whitespace
line.

	
count_indents_length(spacecount, tabs=0, offset=0)[source]

	Counts the number of indents that can be tabs or spacecount
number of spaces in a row from the current line.

Also returns the character length of the indents.

	
count_indents_length_last_line(spacecount, tabs=0, back=5)[source]

	Finds the last meaningful line and returns its indent level and
character length.
Back specifies the amount of lines to look back for a none whitespace
line.

	
eat_length(length)[source]

	Move current position forward by length and sets eos if needed.

	
eat_line()[source]

	Move current position forward until the next line.

	
eat_string(string)[source]

	Move current position by length of string and count lines by
.

	
eol_distance_last(offset=0)

	Return the ammount of characters until the last newline.

	
eol_distance_next(offset=0)

	Return the amount of characters until the next newline.

	
get_all_lines()[source]

	Return all lines of the SourceString as a list of SourceLine’s.

	
get_char(offset=0)[source]

	Return the current character in the working string.

	
get_current_line()[source]

	Return a SourceLine of the current line.

	
get_length(length, trim=0, offset=0)[source]

	Return string at current position + length.
If trim == true then get as much as possible before eos.

	
get_line(lineno)[source]

	Return any line as a SourceLine and None if lineno doesnt exist.

	
get_lines(first, last)[source]

	Return SourceLines for lines between and including first & last.

	
get_string(offset=0)[source]

	Return non space chars from current position until a whitespace.

	
get_surrounding_lines(past=1, future=1)[source]

	Return the current line and x,y previous and future lines.
Returns a list of SourceLine’s.

	
has_space(length=1, offset=0)[source]

	Returns boolean if self.pos + length < working string length.

	
load_file(filename)[source]

	Read in file contents and set the current string.

	
match_any_char(chars, offset=0)[source]

	Match and return the current SourceString char if its in chars.

	
match_any_string(strings, word=0, offset=0)[source]

	Attempts to match each string in strings in order.
Will return the string that matches or an empty string if no match.

If word arg >= 1 then only match if string is followed by a whitespace
which is much higher performance.

If word is 0 then you should sort the strings argument yourself by
length.

	
match_function_pattern(first, rest=None, least=1, offset=0)

	Match each char sequentially from current SourceString position
until the pattern doesnt match and return all maches.

Integer argument least defines and minimum amount of chars that can
be matched.

This version takes functions instead of string patterns.
Each function must take one argument, a string, and return a
value that can be evauluated as True or False.

If rest is defined then first is used only to match the first arg
and the rest of the chars are matched against rest.

	
match_string(string, word=0, offset=0)[source]

	Returns 1 if string can be matches against SourceString’s
current position.

If word is >= 1 then it will only match string followed by whitepsace.

	
match_string_pattern(first, rest=None, least=1, offset=0)

	Match each char sequentially from current SourceString position
until the pattern doesnt match and return all maches.

Integer argument least defines and minimum amount of chars that can
be matched.

If rest is defined then first is used only to match the first arg
and the rest of the chars are matched against rest.

	
reset_position()[source]

	Reset all current positions.

	
rest_of_string(offset=0)[source]

	A copy of the current position till the end of the source string.

	
set_string(string)[source]

	Set the working string and its length then reset positions.

	
skip_whitespace(newlines=0)[source]

	Moves the position forwards to the next non newline space character.
If newlines >= 1 include newlines as spaces.

	
spew_length(length)

	Move current position backwards by length.

partpyerror Module

Custom exception for classes inheriting SourceString or Matcher.

	
exception partpy.partpyerror.PartpyError(obj, msg=None)[source]

	Bases: exceptions.Exception

Takes a SourceString or Matcher derived object and an optional message.

When converted to a string will display the previous and current line
with line numbers and a ‘^’ under the current position of the object with
the optional message on the following line.

	
__weakref__

	list of weak references to the object (if defined)

	
pretty_print(carrot=True)

	Print the previous and current line with line numbers and
a carret under the current character position.

Will also print a message if one is given to this exception.

spattern Module

Predefined string patterns for use in Matcher.match_pattern methods.

	Defines the following:

	
	alphal = lower case alphabet

	alphau = upper case alphabet

	alpha = lower and upper case alphabet

	number = digits

	alnum = digits or lower and upper case alphabet

	identifier = first(alpha) rest(alnum | ‘_’)

	qualified = first(alpha) rest(alnum | ‘.’ | ‘_’)

	integer = first(number | ‘-‘) rest(number)

fpattern Module

Predefined function patterns for use in Matcher.match_function methods.

	Defines the following:

	
	alphal = lower case alphabet

	alphau = upper case alphabet

	alpha = lower and upper case alphabet

	number = digits

	alnum = digits or lower and upper case alphabet

	identifier = first(alpha) rest(alnum | ‘_’)

	qualified = first(alpha) rest(alnum | ‘.’ | ‘_’)

	integer = first(number | ‘-‘) rest(number)

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	partpy 1.2.4 documentation

examples Package

This package is a series of self contained examples that use partpy to accomplish
their goal. All complete examples are included in the test suite to check their
output and that they function.

contacts Module

SourceString utilizes SourceString to provide some simple string matching
functionality.

	
class examples.contacts.ContactsParser(string=None)[source]

	Bases: partpy.sourcestring.SourceString

The contacts parser will simply look for name and website pairs
while disregarding any kind of whitespace and store them in a dict.

	
parse()[source]

	Run the parser over the entire sourestring and return the results.

	
parse_contact()[source]

	Parse a top level contact expression, these consist of a name
expression a special char and an email expression.

The characters found in a name and email expression are returned.

	
parse_email()[source]

	Email address parsing is done in several stages.
First the name of the email use is determined.
Then it looks for a ‘@’ as a delimiter between the name and the site.
Lastly the email site is matched.

Each part’s string is stored, combined and returned.

	
parse_name()[source]

	This function uses string patterns to match a title cased name.
This is done in a loop until there are no more names to match so as
to be able to include surnames etc. in the output.

	
parse_top_level()[source]

	The top level parser will do a loop where it looks for a single
contact parse and then eats all whitespace until there is no more
input left or another contact is found to be parsed and stores them.

	
parse_whitespace()[source]

	This function simply eats chars until the current char is no longer
a space, tab, newline.

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	partpy 1.2.4 documentation

 Python Module Index

 e |
 p

 			

 		
 e	

 	[image: -]
 	
 examples	

 	
 	
 examples.contacts	

 			

 		
 p	

 	[image: -]
 	
 partpy	

 	
 	
 partpy.fpattern	

 	
 	
 partpy.partpyerror	

 	
 	
 partpy.sourcestring	

 	
 	
 partpy.spattern	

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	partpy 1.2.4 documentation

Index

 _
 | A
 | C
 | E
 | G
 | H
 | L
 | M
 | P
 | R
 | S

_

 	

 	__contains__() (partpy.sourcestring.SourceString method)

 	__getitem__() (partpy.sourcestring.SourceString method)

 	__init__() (partpy.sourcestring.SourceString method)

 	__iter__() (partpy.sourcestring.SourceString method)

 	

 	__len__() (partpy.sourcestring.SourceString method)

 	__repr__() (partpy.sourcestring.SourceString method)

 	__weakref__ (partpy.partpyerror.PartpyError attribute)

 	

 	(partpy.sourcestring.SourceString attribute)

A

 	

 	add_string() (partpy.sourcestring.SourceString method)

C

 	

 	ContactsParser (class in examples.contacts)

 	count_indents() (partpy.sourcestring.SourceString method)

 	count_indents_last_line() (partpy.sourcestring.SourceString method)

 	

 	count_indents_length() (partpy.sourcestring.SourceString method)

 	count_indents_length_last_line() (partpy.sourcestring.SourceString method)

E

 	

 	eat_length() (partpy.sourcestring.SourceString method)

 	eat_line() (partpy.sourcestring.SourceString method)

 	eat_string() (partpy.sourcestring.SourceString method)

 	

 	eol_distance_last() (partpy.sourcestring.SourceString method)

 	eol_distance_next() (partpy.sourcestring.SourceString method)

 	examples.contacts (module)

G

 	

 	get_all_lines() (partpy.sourcestring.SourceString method)

 	get_char() (partpy.sourcestring.SourceString method)

 	get_current_line() (partpy.sourcestring.SourceString method)

 	get_first_char() (partpy.sourcestring.SourceLine method)

 	get_last_char() (partpy.sourcestring.SourceLine method)

 	

 	get_length() (partpy.sourcestring.SourceString method)

 	get_line() (partpy.sourcestring.SourceString method)

 	get_lines() (partpy.sourcestring.SourceString method)

 	get_string() (partpy.sourcestring.SourceString method)

 	get_surrounding_lines() (partpy.sourcestring.SourceString method)

H

 	

 	has_space() (partpy.sourcestring.SourceString method)

L

 	

 	load_file() (partpy.sourcestring.SourceString method)

M

 	

 	match_any_char() (partpy.sourcestring.SourceString method)

 	match_any_string() (partpy.sourcestring.SourceString method)

 	match_function_pattern() (partpy.sourcestring.SourceString method)

 	

 	match_string() (partpy.sourcestring.SourceString method)

 	match_string_pattern() (partpy.sourcestring.SourceString method)

P

 	

 	parse() (examples.contacts.ContactsParser method)

 	parse_contact() (examples.contacts.ContactsParser method)

 	parse_email() (examples.contacts.ContactsParser method)

 	parse_name() (examples.contacts.ContactsParser method)

 	parse_top_level() (examples.contacts.ContactsParser method)

 	parse_whitespace() (examples.contacts.ContactsParser method)

 	

 	partpy.fpattern (module)

 	partpy.partpyerror (module)

 	partpy.sourcestring (module)

 	partpy.spattern (module)

 	PartpyError

 	pretty_print() (partpy.partpyerror.PartpyError method)

 	

 	(partpy.sourcestring.SourceLine method)

R

 	

 	reset_position() (partpy.sourcestring.SourceString method)

 	

 	rest_of_string() (partpy.sourcestring.SourceString method)

S

 	

 	set_string() (partpy.sourcestring.SourceString method)

 	skip_whitespace() (partpy.sourcestring.SourceString method)

 	SourceLine (class in partpy.sourcestring)

 	

 	SourceString (class in partpy.sourcestring)

 	spew_length() (partpy.sourcestring.SourceString method)

 	strip_trailing_ws() (partpy.sourcestring.SourceLine method)

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

_modules/partpy/partpyerror.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 		Module code »

 Source code for partpy.partpyerror

"""Custom exception for classes inheriting SourceString or Matcher."""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'

[docs]class PartpyError(Exception):
 """Takes a SourceString or Matcher derived object and an optional message.

 When converted to a string will display the previous and current line
 with line numbers and a '^' under the current position of the object with
 the optional message on the following line.
 """
[docs] def __init__(self, obj, msg = None):
 super(PartpyError, self).__init__(obj, msg)
 self.partpymsg = msg
 self.partpyobj = obj

[docs] def __repr__(self):
 output = [str(line) for line in \
 self.partpyobj.get_surrounding_lines(1, 0)]

 padding = 1
 if self.partpyobj.row < 1000:
 padding = 2
 if self.partpyobj.row < 100:
 padding = 3
 if self.partpyobj.row < 10:
 padding = 4

 output.append('\n' + \
 (' ' * (self.partpyobj.col + padding + 1)) + '^' + '\n')
 if self.partpymsg:
 output.append(self.partpymsg)

 return ''.join(output)

[docs] def __str__(self):
 return self.__repr__()

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_modules/examples/contacts.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 		Module code »

 Source code for examples.contacts

"""SourceString utilizes SourceString to provide some simple string matching
functionality."""
from __future__ import print_function
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'

from partpy import SourceString
from partpy import PartpyError
from partpy import spattern as spat

EXAMPLE = '''
Taylor Nekroze Lawson - nekroze@eturnilnetwork.com
Some Random:randomkid@randomail.net
'''
EXPECTED = {'Taylor Nekroze Lawson': 'nekroze@eturnilnetwork.com',
 'Some Random': 'randomkid@randomail.net'}

[docs]class ContactsParser(SourceString):
 """The contacts parser will simply look for name and website pairs
 while disregarding any kind of whitespace and store them in a dict.
 """
[docs] def parse(self):
 """Run the parser over the entire sourestring and return the results."""
 try:
 return self.parse_top_level()
 except PartpyError as ex:
 print(ex)

[docs] def parse_top_level(self):
 """The top level parser will do a loop where it looks for a single
 contact parse and then eats all whitespace until there is no more
 input left or another contact is found to be parsed and stores them.
 """
 contacts = []
 while not self.eos:
 contact = self.parse_contact() # match a contact expression.
 if not contact: # There was no contact so end file.
 break # This would be a nice place to put other expressions.
 contacts.append(contact)
 # skip all whitespace between the end of the last contact and the
 # next non whitespace character, ie until something interesting.
 self.parse_whitespace()
 return dict((key, value) for (key, value) in contacts)

[docs] def parse_contact(self):
 """Parse a top level contact expression, these consist of a name
 expression a special char and an email expression.

 The characters found in a name and email expression are returned.
 """
 self.parse_whitespace()
 name = self.parse_name() # parse a name expression and get the string.
 if not name: # No name was found so shout it out.
 raise PartpyError(self, 'Expecting a name')

 self.parse_whitespace()
 # allow name and email to be delimited by either a ':' or '-'
 if not self.match_any_char(':-'):
 raise PartpyError(self, 'Expecting : or -')
 self.eat_length(1)
 self.parse_whitespace()

 email = self.parse_email() # parse an email and store its string.
 if not email:
 raise PartpyError(self, 'Expecting an email address')
 return (name, email) # return the strings matching a name and email.

[docs] def parse_whitespace(self):
 """This function simply eats chars until the current char is no longer
 a space, tab, newline.
 """
 while True:
 char = self.get_char() # get the current SourceString character.
 if not char.isspace():
 break
 else:
 # eat the whitespace char. eat_string(char) is used rather then
 # eat_length(1) because eat_string detects newlines and uses it
 # for position counting.
 self.eat_string(char)

[docs] def parse_name(self):
 """This function uses string patterns to match a title cased name.
 This is done in a loop until there are no more names to match so as
 to be able to include surnames etc. in the output."""
 name = []
 while True:
 # Match the current char until it doesnt match the given pattern:
 # first char must be an uppercase alpha and the rest must be lower
 # cased alphas.
 part = self.match_pattern(spat.alphau, spat.alphal)
 if part == '':
 break # There is no more matchable strings.
 self.eat_string(part) # Eat the found string
 name.append(part) # Store this name part
 if self.get_char() == ' ': # if the current char is a single space
 # eat it. This allows one space between parts
 self.eat_length(1)

 if not len(name): # if no name parts where detected raise an expection.
 raise PartpyError(self, 'Expecting a title cased name')
 return ' '.join(name) # return the strings of the names found

[docs] def parse_email(self):
 """Email address parsing is done in several stages.
 First the name of the email use is determined.
 Then it looks for a '@' as a delimiter between the name and the site.
 Lastly the email site is matched.

 Each part's string is stored, combined and returned.
 """
 email = []
 # Match from current char until a non lower cased alpha
 name = self.match_pattern(spat.alphal)
 if not name:
 raise PartpyError(self, 'Expected a valid name')

 email.append(name) # Store the name
 self.eat_string(name) # Eat the name

 nextchar = self.get_char()
 if not nextchar == '@':
 raise PartpyError(self, 'Expecting @, found: ' + nextchar)

 email.append(nextchar)
 self.eat_length(1) # Eat the '@' symbol

 # Use string pattern matching to match all lower cased alphas or '.'s.
 site = self.match_pattern(spat.alphal + '.')
 if not site:
 raise PartpyError(self, 'Expecting a site, found: ' + site)

 email.append(site)
 self.eat_string(site) # Eat the site
 return ''.join(email) # Return the matched string

PARSER = ContactsParser()
PARSER.set_string(EXAMPLE)

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 All modules for which code is available

		examples.contacts

		partpy.fpattern

		partpy.partpyerror

		partpy.sourcestring

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/partpy/fpattern.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 		Module code »

 Source code for partpy.fpattern

"""Predefined function patterns for use in Matcher.match_function methods."""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'

alphal = str.islower
alphau = str.isupper
alpha = str.isalpha

number = str.isdigit
alnum = str.isalnum

[docs]def _identifier_first(char):
 return alpha(char) or char == '_'

identifier = (_identifier_first, alnum)

[docs]def _qualified_rest(char):
 return alpha(char) or char == '.'

qualified = (_identifier_first, _qualified_rest)

[docs]def _integer_first(char):
 return number(char) or char == '-'

integer = (_integer_first, number)

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down.png

_static/plus.png

_modules/partpy/sourcestring.html

 Navigation

 		
 index

 		
 modules |

 		partpy 1.2.4 documentation »

 		Module code »

 Source code for partpy.sourcestring

"""SourceString stores the entire string to be parsed in memory and provides
some simple methods for retrieving and moving current position aswell as methods
for matching strings and patterns.
"""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'

from .partpyerror import PartpyError

[docs]class SourceString(object):
 """Stores the parse string and its length followed by current position
 in the string and if the end of the string has been reached.

 It also stores the current row and column position as manually counted.

 Provides multiple methods for matching strings and patterns and working with
 the source string.
 """
[docs] def __init__(self, string = None):
 self.string = ''
 self.length = 0
 self.pos = 0
 self.col = 0
 self.row = 0
 self.eos = 0
 if string is not None:
 self.set_string(string)

[docs] def load_file(self, filename):
 """Read in file contents and set the current string."""
 with open(filename, 'r') as sourcefile:
 self.set_string(sourcefile.read())

[docs] def set_string(self, string):
 """Set the working string and its length then reset positions."""
 self.string = string
 self.length = len(string)
 self.reset_position()

[docs] def add_string(self, string):
 """Add to the working string and its length and reset eos."""
 self.string += string
 self.length += len(string)
 self.eos = 0

[docs] def reset_position(self):
 """Reset all current positions."""
 self.pos = 0
 self.col = 0
 self.row = 0
 self.eos = 0

[docs] def has_space(self, length = 1):
 """Returns boolean if self.pos + length < working string length."""
 return self.pos + length - 1 < self.length

[docs] def eat_length(self, length):
 """Move current position by length and set eos if not has_space()."""
 pos = self.pos
 if self.eos or pos + length > self.length:
 return None

 col = self.col
 row = self.row
 for char in self.string[pos:pos + length]:
 col += 1
 pos += 1
 if char == '\n': # handle a newline char
 col = 0
 row += 1

 self.pos = pos
 self.col = col
 self.row = row

 if not self.has_space(): # Set eos if there is no more space left.
 self.eos = 1

[docs] def eat_string(self, string):
 """Move current position by length of string and count lines by \n."""
 pos = self.pos
 if self.eos or pos + len(string) > self.length:
 return None

 col = self.col
 row = self.row
 for char in string:
 col += 1
 pos += 1
 if char == '\n': # handle a newline char
 col = 0
 row += 1

 self.pos = pos
 self.col = col
 self.row = row

 if not self.has_space(): # Set eos if there is no more space left.
 self.eos = 1

[docs] def eat_line(self):
 """Move current position forward until the next line."""
 if self.eos:
 return None
 eat_length = self.eat_length
 get_char = self.get_char
 has_space = self.has_space
 while has_space() and get_char() != '\n':
 eat_length(1)
 eat_length(1)

[docs] def get_char(self):
 """Return the current character in the working string."""
 if not self.has_space():
 return ''

 return self.string[self.pos]

[docs] def get_length(self, length, trim = 0):
 """Return string at current position + length.
 If trim == true then get as much as possible before eos"""
 if trim and not self.has_space(length):
 return self.string[self.pos:]
 elif self.has_space(length):
 return self.string[self.pos:self.pos + length]
 else:
 return ''

[docs] def get_string(self):
 """Return non space chars from current position until a whitespace."""
 if not self.has_space():
 return ''

 # Get a char for each char in the current string from pos onward
 # solong as the char is not whitespace.
 # The following is not yet supported with cython 0.18.0
 #from itertools import takewhile
 #chars = (y for y in takewhile(lambda x: not x.isspace(), string[pos:]))
 chars = []
 for char in self.string[self.pos:]:
 if char.isspace():
 break
 else:
 chars.append(char)
 return ''.join(chars)

[docs] def generator(self, offset = 0):
 """A generator for the current position to the end, pure python."""
 for char in self.string[self.pos + offset:]:
 yield char

[docs] def rest_of_string(self, offset = 0):
 """A copy of the current position till the end of the string."""
 if self.has_space(offset):
 return self.string[self.pos + offset:]
 else:
 return ''

[docs] def get_line(self, lineno):
 """Return any line as a SourceLine and None if lineno doesnt exist."""
 line = 0
 output = []
 for char in self.string:
 if line == lineno:
 output.append(char)
 elif line > lineno:
 break

 if char == '\n':
 line += 1
 if not output:
 return None

 return SourceLine(''.join(output), lineno)

[docs] def get_current_line(self):
 """Return a SourceLine of the current line."""
 pos = self.pos - self.col
 string = self.string
 end = self.length

 output = []
 while string[pos] != '\n':
 output.append(string[pos])
 pos += 1
 if pos == end:
 break
 else:
 output.append(string[pos])

 if not output:
 return None

 return SourceLine(''.join(output), self.row)

[docs] def get_lines(self, first, last):
 """Return SourceLines for lines between and including first and last."""
 line = 0
 linestring = []
 linestrings = []
 for char in self.string:
 if line >= first and line <= last:
 linestring.append(char)
 if char == '\n':
 linestrings.append(''.join(linestring))
 linestring = []
 elif line > last:
 break

 if char == '\n':
 line += 1
 if linestring:
 linestrings.append(''.join(linestring))
 elif not linestrings:
 return None

 return [SourceLine(lineno, first + num) for num, lineno in \
 enumerate(linestrings)]

[docs] def get_surrounding_lines(self, past = 1, future = 1):
 """Return the current line and x,y previous and future lines.
 Returns a list of SourceLine's"""
 string = self.string
 pos = self.pos - self.col
 end = self.length
 row = self.row

 linesback = 0
 while linesback > -past:
 if pos <= 0:
 break
 elif string[pos - 2] == '\n':
 linesback -= 1
 pos -= 1

 output = []
 linestring = []
 lines = future + 1
 while linesback < lines:
 if pos >= end:
 linestring.append(string[pos - 1])
 output.append(
 SourceLine(''.join(linestring[:-1]), row + linesback))
 break
 elif string[pos] == '\n':
 linestring.append(string[pos])
 pos += 1
 output.append(
 SourceLine(''.join(linestring), row + linesback))
 linesback += 1
 linestring = []
 linestring.append(string[pos])
 pos += 1

 return output

[docs] def get_all_lines(self):
 """Return all lines of the SourceString as a list of SourceLine's."""
 output = []
 line = []
 lineno = 0
 for char in self.string:
 line.append(char)
 if char == '\n':
 output.append(SourceLine(''.join(line), lineno))
 line = []
 lineno += 1
 if line:
 output.append(SourceLine(''.join(line), lineno))

 return output

[docs] def match_string(self, string, word = 0):
 """Returns 1 if string can be matches against SourceString's
 current position.

 If word is >= 1 then it will only match string followed by whitepsace"""
 if word:
 return self.get_string() == string
 return self.get_length(len(string)) == string

[docs] def match_any_string(self, strings, word = 0):
 """Attempts to match each string in strings in order of length.
 Will return the string that matches or an empty string if no match.
 Sorts strings list by string length internally.

 if Word then only match if string is followed by a whitespace."""
 if word:
 current = self.get_string()
 return current if current in strings else ''

 strings = sorted(strings, key = len)
 current = ''

 currentlength = 0
 length = 0
 for string in strings:
 length = len(string)
 if length != currentlength:
 current = self.get_length(length)
 if string == current:
 return string
 return ''

[docs] def match_any_char(self, chars):
 """Match and return the current SourceString char if its in chars."""
 if not self.has_space():
 return ''
 current = self.string[self.pos]
 return current if current in chars else ''

[docs] def match_pattern(self, first, rest = None, least = 1):
 """Match each char sequentially from current SourceString position
 until the pattern doesnt match and return all maches.

 First may be a list or tuple that will get unpacked to first, rest.

 Integer argument least defines and minimum amount of chars that can
 be matched.

 If rest is defined then first is used only to match the first arg
 and the rest of the chars are matched against rest.
 """
 ftype = type(first)
 if rest is None and ftype in (tuple, list):
 first, rest = first

 firstchar = self.string[self.pos]
 if not firstchar in first:
 return ''

 output = [firstchar]
 pattern = first if rest is None else rest

 for char in self.string[self.pos + 1:]:
 if char in pattern:
 output.append(char)
 else:
 break

 if len(output) < least:
 return ''

 return ''.join(output)

[docs] def match_function(self, first, rest = None, least = 1):
 """Match each char sequentially from current SourceString position
 until the pattern doesnt match and return all maches.

 First may be a list or tuple that will get unpacked to first, rest.

 Integer argument least defines and minimum amount of chars that can
 be matched.

 This version takes functions instead of string patterns.
 Each function must take one argument, a string, and return a
 value that can be evauluated as True or False.

 If rest is defined then first is used only to match the first arg
 and the rest of the chars are matched against rest.
 """
 ftype = type(first)
 if rest is None and ftype in (tuple, list):
 first, rest = first

 firstchar = self.string[self.pos]
 if not first(firstchar):
 return ''

 output = [firstchar]
 pattern = first if rest is None else rest

 for char in self.string[self.pos + 1:]:
 if pattern(char):
 output.append(char)
 else:
 break

 if len(output) < least:
 return ''

 return ''.join(output)

[docs] def count_indents(self, spacecount, tabs = 0):
 """Counts the number of indents that can be tabs or spacecount
 number of spaces in a row from the current position."""
 spaces = 0
 indents = 0
 for char in self.string[self.pos - self.col:]:
 if char == ' ':
 spaces += 1
 elif tabs and char == '\t':
 indents += 1
 spaces = 0
 else:
 break
 if spaces == spacecount:
 indents += 1
 spaces = 0
 return indents

[docs] def count_indents_length(self, spacecount, tabs = 0):
 """Counts the number of indents that can be tabs or spacecount
 number of spaces in a row from the current position.

 Also returns the character length of the indents.
 """
 spaces = 0
 indents = 0
 charlen = 0
 for char in self.string[self.pos - self.col:]:
 if char == ' ':
 spaces += 1
 elif tabs and char == '\t':
 indents += 1
 spaces = 0
 else:
 break
 charlen += 1
 if spaces == spacecount:
 indents += 1
 spaces = 0
 return (indents, charlen)

[docs] def count_indents_last_line(self, spacecount, tabs = 0, back = 5):
 """Finds the last meaningful line and returns its indent level."""
 lines = self.get_surrounding_lines(back, 0)

 for line in reversed(lines):
 if not line.string.isspace():
 return line.count_indents(spacecount, tabs)
 return 0

[docs] def count_indents_length_last_line(self, spacecount, tabs = 0, back = 5):
 """Finds the last meaningful line and returns its indent level and
 character length.
 """
 lines = self.get_surrounding_lines(back, 0)

 for line in reversed(lines):
 if not line.string.isspace():
 return line.count_indents_length(spacecount, tabs)
 return (0, 0)

[docs] def skip_whitespace(self, newlines = 0):
 """Moves the position forwards to the next non newline space character.
 If newlines >= 1 include newlines as spaces.
 """
 if newlines:
 while not self.eos:
 if self.get_char().isspace():
 self.eat_length(1)
 else:
 break
 else:
 char = ''
 while not self.eos:
 char = self.get_char()
 if char.isspace() and char != '\n':
 self.eat_length(1)
 else:
 break

[docs] def retrieve_tokens(self, matcher, tokens, longest = 1, newlines = 1):
 """Moves through SourceString and attempts to match and yield tokens
 while skipping over whitespace and newlines unless newlines == 0.
 Uses the longest match by default set longest to 0 to match shortest.
 The matcher argument is either match_pattern or match_function.

 Currently yield is not supported by cython so this function is
 un-optimized but is still compiled. As such this could use more pure
 python optimizations.
 """
 matches = {}
 ordered = []
 matched = ''
 index = -1 if longest else 0

 while not self.eos:
 self.skip_whitespace(newlines)
 for token, pattern in tokens.items():
 matched = matcher(pattern)
 if matched:
 matches[matched] = token

 if len(matches):
 ordered = sorted(matches.keys(), key = len)
 match = ordered[index]
 yield (matches[match], match)
 self.eat_length(len(match))
 else:
 raise PartpyError(self, 'No token pattern for current char.')
 matched = ''
 matches = {}
 match = ''
 ordered = []

[docs] def __repr__(self):
 return self.string

[docs] def __getitem__(self, index):
 return self.string[index]

[docs] def __delitem__(self, index):
 del self.string[index]

[docs] def __setitem__(self, index, value):
 self.string[index] = value

[docs] def __len__(self):
 return len(self.string)

[docs] def __contains__(self, string):
 return string in self.string

[docs] def __iter__(self):
 """Yields the current char and moves the position onwards until eos."""
 string = self.string
 while not self.eos:
 yield string[self.pos]
 self.eat_length(1)

[docs]class SourceLine(SourceString):
 """Contains an entire line of a source with handy line specific methods."""

[docs] def __init__(self, string, lineno):
 super(SourceLine, self).__init__(string)
 self.lineno = lineno

[docs] def strip_trailing_ws(self):
 """Remove trailing whitespace from internal string."""
 self.string = self.string.rstrip()

[docs] def get_first_char(self):
 """Return the first non-whitespace character of the line."""
 for char in self.string:
 if not char.isspace():
 return char

[docs] def get_last_char(self):
 """Return the last non-whitespace character of the line."""
 for char in reversed(self.string):
 if not char.isspace():
 return char

[docs] def __str__(self):
 """Return a string of this line including linenumber."""
 lineno = self.lineno
 padding = 0
 if lineno < 1000:
 padding = 1
 if lineno < 100:
 padding = 2
 if lineno < 10:
 padding = 3

 return str(lineno) + (' ' * padding) + '|' + self.string

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

